The use of a primal dual interior point method (PD) based optimizer as a robust linear programming (LP) solver is now well established. Instead of replacing the sparse simplex algorithm (SSX), the PD is increasingly seen as complementing it. The progress of PD iterations is not hindered by the degeneracy or the stalling problem of the SSX, indeed it reaches the 'near optimum' solution very quickly. The SSX algorithm, in contrast, is not affected by the boundary conditions which slow down the convergence of the PD.